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Figure 1 Adapted from Phan+ (2018) Nature
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Recent observations have revealed a novel type of magnetic reconnection, known as electron-only \r/;//;/j))/manenc Flelds ’
reconnection, is present in Earth’s turbulent magnetosheath [Phan+ (2018) Nature; Stawarz+ (2019) ApJL] Twisted ( ‘ /
Magnetic )

+ Electron-only reconnection is thought to occur when the length of current sheets is too short for ions \‘

to fully couple to the newly reconnected field lines before they relax (Fig. 1) j )\
+ We systematically examine reconnection events in 60 intervals of magnetosheath turbulence using °°;;z';:'h°" E

observations from NASA's Magnetospheric Multiscale (MMS) spacecraft )

» Properties of the reconnection events are found to depend on correlation length of the turbulence

Figure 2

Example Turbulent Interval

The region of shocked solar wind plasma downstream of Earth’s bow shock is filled with complex turbulent
fluctuations that generate many thin current sheets, which can be sites for magnetic reconnection (Fig. 1)

Whether ions couple into the reconnection dynamics could influence both the nonlinear turbulent dynamics
and how dissipated energy is partitioned between particle species
- Important to determine under what conditions electron-only reconnection occurs

We identify 60 magnetosheath turbulence intervals spread across the dayside magnetosheath for which
high-resolution MMS burst data is available (Fig. 2 & Fig. 3)

Intervals are selected such that they are:
- Roughly homogeneous on large-scales
-> Contain many turbulent correlation lengths
- Taylor hypothesis is valid allowing the conversion of timescales to length scales (i.e., Ax = —UyAt)
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Local maxima in |J| > 3/,.s are identified (Fig. 4a)
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Manually verify each reconnection event

Overall, ~ 10% of the intense current sheets show clear evidence of reconnection
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Several additional features are observed for many events that are consistent with expectations from quasi-2D reconnection:
-> Bipolar variations in the out-of-plane (B,,) magnetic field component consistent with the Hall effect (Fig. 5b & Fig. 6b)
- Deflection of electron jet toward one side of the current sheet due to JxB ;4. force (Fig. 5d)
-> Strong electromagnetic energy conversion from fields into the particles in the reconnecting current sheet (Fig. 5h & Fig. 6h)
- In some events, heating is be observed in conjunction with electromagnetic energy conversion (Fig. 6i)

Presence of ion jets in the events can be examined using the Walén relation
-> Look for change in correlation between AB, /\/uom;n and Au;;, centred on the B, reversal (Fig. 6k-n)
-> Majority of events do not show clear evidence of ion jets (e.g., Fig. 5)
-> Subset of 18 events have either fully or partially coupled ion jets (e.g., Fig. 6)

For an individual event, the lack of ion jets could be due to either electron-only reconnection or encountering the event near the x-line
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Unlike standard ion-coupled reconnection, electron-only reconnection is expected to occur at

thin sub-ion scale current sheets and only produce fast super-Alfvénic electron jets
[Phan+ (2018) Nature; Pyakurel+ (2019) Phys. Plasmas]

For each event, peak ion and electron jet speeds across the four MMS spacecraft and current
sheet thickness observed at the spacecraft with the largest peak current are quantified

Fastest electron jets are observed at thin sub-ion scale current sheets, while ion jets are only
observed at ion-scale current sheets (Fig. 7a)

1.0T

0.8

0.6

0.4

0.2
0.0L

Ac<median]

0

20 40 60 80
Current Sheet Thickness [d,]

100

1.0
0.8

0.6

0.4

0.2
0.0

Ac<median]

0

10 20 30

Max. Electron Jet Speed [AV, ]

Current sheet thicknesses are centred on ion inertial length for

large A and shift toward sub-ion scale current sheets at

smaller 4. (Fig. 7b)

- Cumulative distributions show clear shift to thinner current
sheets at short 1, even when potential bias due to finite
time resolution of observations is considered (Fig. 7c)

Tendency for faster electron jets in intervals with the shortest

Ac also apparent (Fig. 7d)

-> Difference in cumulative distributions is not as clear as for
current sheet thickness but there may be a slight difference
in large velocity tail (Fig. 7e)

No clear trend in ion jet speeds is apparent, but more events

would be needed to identify one if it were present (Fig. 7d)

Results are consistent with electron-only reconnection
being more prevalent for turbulence with shorter
magnetic correlation lengths
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